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1. Introduction

The gravitational interaction is well described by General Relativity within a vast range

of distance scales: from solar system to galaxy cluster sizes. Still questions arise on its

applicability at microscopic, where quantum effects are no longer negligible, and super-

horizon distances. At the far end of the length scale, in the deep infrared region, it is

not obvious whether gravity should behave the same as it does at much shorter distances.

Rather, the discovery of (recent) cosmic acceleration from supernovae data opens up the

possibility that gravity could be very different at these scales from what we experience

every day. It could be that the gravitational field is very slightly massive, and the fact

was simply overlooked, because the effects are näıvely negligible at scales shorter than

the characteristic Compton wavelength. But, it was shown [1] that a simple mass term,

quadratic in the fluctuation of the metric, is not acceptable. The classical Hamiltonian

— constructed in the ADM formalism — is not bounded from below. The model is not

classically stable.

Modifying gravity in the IR regime seems to be rather non-trivially constrained. In

the past, several attempts to build classically stable models of IR modified gravity have

been made. For instance, extra-dimensions may manifest themselves only at very large

distances, like in the DGP model [2]. Or, without invoking extra-dimensions, the presence

of non-local interactions could change the gravitational field in the IR regime, as in [3]. Or

again, a similar effect can be induced by Lorentz-violating terms, like in [4 – 7].

In [8], we considered a class of models of the latter group. We were able to construct

models that are four-dimensional and local, and have the property of being both stable in
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the IR and of departing from standard gravitational interaction only at large distances.

But this was only possible at the price of explicitly breaking the Lorentz symmetry of the

action, which had the effect of introducing new phenomena, like instantaneous interactions.

These effects can be within the experimental bound by tuning the parameters, and more

importantly they do not violate causality.

In the present letter, we will extend the previous discussion by looking at effective

models over a constantly curved background. GR will be deformed with a small Lorentz-

violating term. The model is classically stable and behaves like a de Sitter space-time at

short scales. At larger and larger distances, the departure from de Sitter becomes more

and more pronounced.

A rather generic feature of the model is the tendency to stop the cosmological evolution

and to lead towards a contracting phase. The effect of the deformation is opposite to

that of the cosmological constant, for, as a cosmological constant increases the expansion

speed, the deformation decreases it. After the expansion is stopped, i.e., when the Hubble

parameter goes to zero, the Universe will go through a contracting phase, leading to a

late-time (contracting) de Sitter phase.

This picture will be modified by quantum corrections. In particular, out of the grav-

itational field, particles are produced when the Hubble parameter changes. The effect of

quantum produced particles is to create at late times a space-time singularity of the same

kind as the one of a supercritical Universe. In the latter case, if the matter energy density

is greater than a critical value, the scale factor grows up to a maximum size and then

contracts towards a “Big Crunch” singularity: at some finite moment in the future the

scalar curvature diverges. In the present case, instead, no criticality condition is present.

The cosmological evolution is not stopped by the matter density, but by the deformation

we introduced, therefore, no matter how few particles are produced by quantum effects, a

singularity will always be reached.

The model, which is classically stable, is unstable under quantum correction. This

instability is milder, in fact its time scale can be made parametrically much greater than

the present age of our Universe.

The present letter is organized as follows: we will firstly discuss the general properties

of the gravitational field in models, where a Lorentz-violating interaction for the metric is

added, explicitly showing the absence of additional degrees of freedom and the presence of

instantaneous interaction.

We will then study the cosmological solution of the (deformed) Einstein equation for

two specific choices of the Lorentz-violating interaction. One will give rise to a bouncing

Universe, while the other to a cyclic Universe of parametrically long period. In both cases,

we will consider the quantum production that occurs at the bounce, and its effect on the

cosmological evolution.

The cyclic model will then be discussed in the context of inflation. We will find that the

parameters of the model are constrained by the usual cosmological bounds. In particular,

they have to be exponentially smaller than the Hubble scale during inflation for matching

density perturbation with the values observed in the CMB.
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Finally, we will see the effects of the present class of deformations when in conjunction

with the massive term studied in our previous work [8].

2. General overview

From a particle physicist’s point of view, gravity is the interaction that emerges upon

gauging the Lorentz symmetry of Special Relativity. As for any gauge theory, it should

be possible to describe the low energy effective theory, which arises from the breaking of a

part (or the whole) of the gauge symmetry as a result of some high energy dynamics.

In gravity though, unexpected constraints arise for the low energy theory. It was noted

by Boulware and Deser [1] that, have the classical non-linearities of the gravitational self-

interaction taken into account, the Hamiltonian would generally not be bounded in models

of massive gravity. Thus the Boulware-Deser (BD) instability appears.

The origin of the instability — and therefore how to render stable a model of modified

gravity as originally described in [8] — can be easily understood in the ADM formalism [9],

that is the Hamiltonian formalism for gravity.

Let us construct the GR Hamiltonian. By foliating the space-time with hypersurfaces

Σt for a time variable t, we can replace the four-dimensional metric with the following

three-dimensional variables

γij ≡ gij , N ≡ (−(4)g00)−1/2 and Ni ≡ (4)g0i . (2.1)

N is known as the lapse function, and Ni as the shift function; γij is the induced metric

on Σt. In term of these variables, we can write the four-dimensional ones as

√

−(4)g ≡ N
√
γ , (2.2)

(4)R ≡ (3)R + KijKij −K2 , (2.3)

where Kij is the extrinsic curvature on Σt, defined as

Kij ≡
1

2N
[γ̇ij −∇iNj −∇jNi] . (2.4)

The canonical momentum πij ≡ δL/δγ̇ij is related to Kij by the relation

πij =
√
γ
[

Kij −Kγij
]

. (2.5)

We now have all the ingredients to write the Hamiltonian for the Einstein-Hilbert La-

grangian

L =
√
gR → H ≡ πij γ̇ij − L|γ̇ij 7→πij

=
√
γ
[

NR0 +NiR
i
]

, (2.6)

where

R0 ≡ −(3)R + γ−1

(

πijπ
ij − 1

2
π2

)

,

Ri ≡ −2Dj(γ
−1/2πij) , (2.7)

and Dj is the covariant derivative defined with respect to γij.
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Both N and Ni appear linearly in the Hamiltonian, thus they are Lagrange multipliers.

The variation with respect to them leads to the constraints — R0 = 0 and Ri = 0 — on

the propagating degrees of freedom. The Hamiltonian is exactly zero on the surface of

the constraints, hence the theory is trivially stable: the energy density of the system is

bounded from below.

We will show the emergence of the BD instability for deformed Einstein-Hilbert actions.

For sake of definiteness, we shall consider the Pauli-Fierz (PF) model [10].

The PF term is the most generic deformation that is quadratic in the fluctuation of

the metric over a particular background, and it is Lorentz-symmetric. It describes a mass

for the gravitational field

−1

2
m2

PF[h2
µν − (hµ

µ)2] = −1

2
m2

PF[h2
ij − h2 − 2N2

i + 2h(1 −N2 −N2
i )] . (2.8)

In the equality, the field hµν is expressed in terms of the three-dimensional variables (2.1).

The tensor field is defined as hµν ≡ gµν − ĝµν over a particular background metric ĝµν . The

indices are contracted using ĝµν , i.e., hµ
µ ≡ ĝµνhµν , h ≡ ĝijhij , and so on.

It is evident that the lapse and the shift functions cease to be Lagrange multipliers,

and the variations with respect to them lead to algebraic equations for them, rather than

constraints on the propagating degrees of freedom, as in GR. This is hardly unexpected.

A massive field is known, from the Lorentz group representation, to propagate a number

of degrees of freedom different from that of a massless field.

But, if we now study closely the equations

N =

√
γR0

2m2
PFh

, (2.9)

N i =
1

2m2
PF

(ĝij − hγij)−1Rj , (2.10)

we notice that the Hamiltonian, after substituting the above values for N and Ni,

H =
1

4m2
PF

[

(
√
γR0)2

h
+ γRi(ĝij − hγij)−1Rj

]

+
1

2
m2

PF(h2
ij − h2 + 2h) , (2.11)

is unbounded, as it is readily seen by considering the limit h → 0−, while keeping
√
γR0

and Ri = 0 fixed.

It appears that models with N2-terms — such as PF — are generally unstable. An easy

way-out is obviously to consider more general classes of deformations, in particular the ones

linear inN . It should be noted though, that theN2-term in the PF Hamiltonian (2.8) comes

from the time component of the tensor hµν . From the definition of the lapse function (2.1),

it follows that h00 = g00 − ĝ00 ∼ N2. Thus, removing such a term would lead to an explicit

breaking of the Lorentz symmetry in the action. For a detailed discussion of a PF-like

model with such a property we remind to our previous letter [8].

The class of models we would like to discuss in the present work has the following

Hamiltonian

H =
√
γ
[

NR0 +NiR
i + 2ΛN − 2m2Nf(

√
γ)
]

, (2.12)
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where f(
√
γ) is some function of the determinant of the spatial metric γij as in (2.1), and

we have assumed the presence of a cosmological constant Λ. The deformation we added is

modelled to be linear in N , thus the lapse function is still a Lagrange multiplier. As in GR,

the Hamiltonian is exactly zero on the solution of the constraints. The model is therefore

(classically) stable.

This model, as well as the ones presented in [8], should be thought of as an effective

low energy theory. Like in the Higgs mechanism, the gauge symmetry is broken at low

energy, hence we are assuming the presence of some UV-physics that spontaneously breaks

the Lorentz symmetry of the action, like in the recent models [4, 11 – 17].

The introduction of a deformation could, in principle, lead to the propagation of more

degrees of freedom, some of which may develop into instabilities for the theory. We will

show that only a tranverse-traceless tensor mode is propagating. The explicit breaking of

the Lorentz symmetry will instead show up as instanteneous interactions, as first noticed

in [8]. To explicitly study the degrees of freedom, we turn now to the Lagrangian formalism.

The Lagrangian can be found by performing a Legendre transformation on (2.12)

L =
√−g

[

R− 2Λ + 2m2f(
√
γ)
]

, (2.13)

and it should be noted that we are forced to keep a somewhat mixed formalism. The

deformation is written in terms of the determinant of γij , hence retaining in part the

notion of the three-dimensional variables (2.1) used in the ADM formalism.

The equations of motion are

Gµν +

[

Λ −m2f(
√
γ)

(

1 +
√
γ
f ′(

√
γ)

f(
√
γ)

)]

gµν −m2

√
γf ′(

√
γ)

|g00| δ0µδ
0
ν = 0 , (2.14)

where Gµν is the Einstein tensor defined as Gµν ≡ Rµν − 1/2R gµν , and the last term is

zero for µ, ν 6= 0.

The deformed action (2.13) is not invariant under Lorentz transformations anymore.

The determinant of γij will transform under xµ → Λα
µ xα as it can be explicitly checked. The

introduced deformation breaks the Lorentz invariance of the action down to the rotational

group. The measure on the hypersurface Σt is invariant under diffeomorphisms acting on

its own world-volume.

The breaking of the Lorentz symmetry stems out from the presence of a preferred

frame in the model. In the construction of the GR Hamiltonian, a frame is chosen when

picking up a particular foliation Σt of the space-time. The choice is formal in GR, where

the action is invariant under the entire group of the diffeomorphisms, but it is not in the

theory at hand.

The deformation we consider is a function of the spatial part γij of the metric ten-

sor only. To define γij, we need to choose a direction uµ and γij be the induced three-

dimensional metric on the hypersurface orthogonal to uµ. The preferred frame is defined

therefore by uµ. Any transformation orthogonal to uµ is a symmetry of the model, as

briefly stated before.

Because of this remaining invariance of the action, some components of the pertur-

bation hµν over a background metric ĝµν are not independent to the others. For sake of
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simplicity, we shall consider ĝµν to be the Minkowski metric ηµν . It can be shown that the

results we are presenting do not depend on this choice.

The redundancy in the components of hµν can be fixed by a gauge choice, for instance

∂ihij = 0. It fixes the longitudinal modes of hij , but not its trace. The action is indeed not

invariant under the transformation hi
i → hi

i + 2∂iξi, hence the trace hi
i can not be fixed

by a gauge choice.1

The gauge fixing is not the only condition we have to impose on hµν . The requirement

that the equations of motion are covariantly conserved

(2f ′ +
√
γf ′′)∂µ

√
γ + δ0µg

0α∂α

√
γf ′

|g00| − gαβ(Γ0
αβδ

0
µ + Γ0

αµδ
0
β)

√
γf ′

|g00| = 0 , (2.15)

which is known as Proca condition for massive vector fields, constraints even further the

independent components of hµν .

For perturbations over a Minkowski background, (2.15) becomes

f ′0∂
ih0i = 0 , (2.16)

(

f ′0 +
1

2
f ′′0

)

∂kh
i
i +

1

2
f ′0∂kh

0
0 = 0 , (2.17)

where f ′0 ≡ f ′(
√
γ̂) and f ′′0 ≡ f ′′(

√
γ̂).

The study can be done easily using the following decomposition, common in the study

of cosmological perturbations [19],

h(s)
µν =

(

φ ∂iB

∂jB ηijχ+ ∂i∂jE

)

, h(v)
µν =

(

0 ψi

ψj ∂(iFj)

)

, h(t)
µν =

(

0 0

0 hTT
ij

)

,

where hTT
ij is a transverse and traceless tensor, ψi, Fj transverse vectors, and the rest

scalars.

The scalar E and the vector Fj are fixed by our choice of gauge ∂ihij = 0. The

analogous (2.16), (2.17) of the Proca conditions fix instead the longitudinal component of

h0i, i.e., the scalar B, and a combination of h0
0 and hi

i, that is the solution of (2.17).

The independent components of hµν are therefore: a transverse-traceless tensor hTT
ij ,

a transverse vector ψi, and a scalar, combination of φ and χ.

Not all of these five independent components are propagating degrees of freedom. It

was noticed in [8] that a common feature of Lorentz-violating theories is the presence of

an instantaneous interaction. An explicit study of the equations of motion for each and all

components of the perturbation hµν would show that both the vector and the scalar appear

without time derivatives in their equations of motion. Hence, they can not be identified as

propagating degrees of freedom, rather as an instantaneous background.

The propagating degrees of freedom of the model are equivalent to the ones of standard

GR, i.e., a transverse-traceless tensor field. The difference is the presence of instantaneous

1Álvarez et al. in [18] studied a similar model, where the action is symmetric under transverse diffeo-

morphism (TDiff), that is hµν → hµν + ∂(µξν) with ∂µξµ = 0. They found that TDiff invariant theories

contain an additional scalar field; in our case the action is invariant under spatial TDiff and no additional

propagating degrees of freedom are present.
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interactions. It should not surprise, in fact breaking the gauge invariance of the action

does not allow to remove from scattering cross sections components of the metric, like

the Newtonian potential h0
0, which is instantaneous in nature. Thus, they would appear

not only in the exchange of virtual particles, but they would also manifest as physical

phenomena.

3. Stopping the cosmological expansion

Having established the properties of the model under discussion, we shall now consider

more specific examples. We choose f(
√
γ) ≡ γα/2.

We are interested in particular to IR-modifications of gravity. We would like the

deformation to be dominant only at late times during the cosmological evolution, i.e.,

when a(t) ≫ 1. This can be achieved by assuming α > 0.

The equations of motion for this particular choice of f(
√
γ) are

Gµν +
[

Λ − (α+ 1)m2 γα/2
]

gµν − αm2 γ
α/2

|g00| δ
0
µ δ

0
ν = 0 . (3.1)

On the FRW ansatz with zero spatial curvature, ds2 = −dt2 + a(t)2d~x2, they become

ȧ2

a2
− Λ

3
+
m2

3
a3α = 0 . (3.2)

the space-space component of (3.1) is proportional to the time derivative of (3.2) as it can

be checked explicitly.

The additional term a3α in the Friedman equation can be mimicked by a field with

equation of state w = −1 − α. For α > 0, this fictitious field has w < −1.

When m2 > 0, the energy density of the “field” has a wrong sign, while if m2 < 0 its

energy density is well-behaved. The former case will be discussed in detail in the following

of the present section. The latter instead, being of a matter field with w < −1, will drive

the cosmological expansion at an ever increasing acceleration rate, as opposed to de Sitter

space-time of constant acceleration rate. Such a matter field (or deformation) will drive

the Universe towards a final state sometimes called “Big Rip”: the scale factor will diverge

in a finite time.

Our intuition on the cosmological evolution for the m2 > 0 case is scarcer, and this

case should not be treated as for a matter field. Let us therefore investigate the solution

step by step.2

It might be proven useful to discuss the solution of the (modified) Friedmann equa-

tion (3.2), as of a classical point-particle moving in a potential V (a) = (−Λ/3+m2/3 a3α)a2

with zero total energy. The potential is pictured in figure 1, and it should be noticed the

presence of a turning point at a⋆ = (Λ/m2)1/3α.

A classical point-particle moves down the potential hill from an initial position at a = 0

until stops at a⋆, because of the “attractive force” generated by the m2-term. After that

2The study of the cosmology dynamics in the presence of a matter field with negative energy density

can be found in [20].
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Figure 1: Potential for the analogous 1-dimensional dynamics, the dashed line is the potential for

m = 0.

position is reached, it rolls down in opposite direction towards a = 0, which is reached in

an infinite time.

This classical analog is easily translated into the cosmological evolution of the Universe.

For small scale factor a ∼ 0, the dynamics is dominated by the cosmological constant

and the Universe is in an approximate de Sitter phase. During this time of exponential

expansion, the “attractive force” of the m2-term will grow in intensity, until it will become

dominant driving the cosmological evolution to a bounce at a(t⋆) = a⋆ = (Λ/m2)1/3α.

Then, it will contract approaching at late times a (contracting) de Sitter phase.

We can solve analytically the equation of motion (3.2)

a(t) =

(

Λ

m2

)
1
3α

(

cosh

√
3Λα

2
(t− t0)

)− 2
3α

, (3.3)

where t0 is an integration constant to be fixed by imposing the initial condition a|t=0 = 1:

t0 = 2√
3Λα

cosh−1
√

Λ
m2 .

This exact solution is plotted for some positive value of α alongside with the Ricci

curvature R(t) in figure 2. The features previously described are easily recognizable: at

early and late time, the expansion is dominated by the cosmological constant and the

Universe exponentially expands and contracts respectively.

The dynamics presented here is classical, and would be modified by quantum cor-

rections. In particular it is known that, whenever the scalar curvature changes in time,

particles are created via a phenomenon similar to the Hawking radiation for a Black Hole.

To understand it, let us consider a basis of particle creation/annihilation operators

{A†
k , Ak}. The Fock space is defined by determining the vacuum state |Ω〉, which is de-

stroyed by all the annihilation operators, Ak|Ω〉 = 0, and then populating it by acting with

the creation operators onto |Ω〉.

– 8 –
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Figure 2: Plot of a(t) and R(t).

The operators are constructed by canonically quantizing the fields of the particular

theory at hand, but in doing so we should assume a particular background metric. Hence,

if the metric is time-dependent, so are the operators. The vacuum |Ω〉 is annihilated by all

Ak at a given time, but not, in general, at every time. Thus as time goes by, the vacuum

state will be in a superposition of particles, for Ak(t)|Ω〉 6= 0 at a generic late time.

Since the background we found is time-dependent, we would like to study the effects

quantum particle production has on the cosmological evolution.

For sake of clarity we specialize to α = 1. Following [21], the energy density ρq created

up to a time t̄ is given by the following expression

ρq = − 1

32π2a(t̄)4

∫ t̄

−∞
dt1

∫ t̄

−∞
dt2 log

∣

∣

∣

∣

η1 − η2

η0

∣

∣

∣

∣

V ′(t1)V ′(t2) , (3.4)

where V ′(t) = (1 − 6ξ)(ȧ2 + a ä) for the FRW ansatz and ξ = 1/6 for conformally coupled

fields; η is the conformal time defined as dη = dt/a(t)

η = η0 I

(

1

cosh2
√

3Λ
2 (t− t0)

;−1

3
,
1

2

)

with η0 ≡
(

m2

Λ

)1/3 B(−1
3 ,

1
2)√

3Λ
, (3.5)

and I(z; a, b) is the regularized beta function I(z; a, b) = B(z; a, b)/B(a, b), with B(z; a, b)

and B(a, b) being the incomplete and complete beta function respectively.

For sake of simplicity we approximate the quantum corrected dynamics as if particles

were generated all at once when R(t̄) = 0. This rough approximation will not change the

qualitative picture we will describe.

By evaluating the integral of (3.4) up to t̄, we find the energy density to be

ρq =
I

288π2
Λ2 ∼ Λ2 , (3.6)

where I is the numerical result of the (adimensional) integral of (3.4).

As it was noticed in [21], ρq does not depend on the time when the de Sitter expansion

stops, but solely on the change in the scalar curvature. In our model, this means ρq is

proportional to Λ, but not to m2.
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Figure 3: Evolution of the scale factor considering particle creation at t̄.

After t̄, the cosmological evolution will change to include the presence of matter. The

analytical solution of the Friedmann equation is

a=

(

Λ

2m2
+

√

Λ2

4µ4
+

ρq

M2
Plm

2

)1/3

sn2/3













√

3m2ρq

2M2
PlΛ

2 (t− t̄)

√

1 +

√

1+
4m2ρq

M2
PlΛ

2

,

1 +

√

1+
4m2ρq

M2
PlΛ

2

1−
√

1 +
4m2ρq

M2
PlΛ

2













, (3.7)

where sn(u, µ) is one of the Jacobi elliptic functions.

The plot of the scale factor a(t) obtained by matching (3.3) with (3.7) at t = t̄ is shown

in figure 3.

At t & t̄, the m2-term is driving the cosmological evolution, in fact to have it to stop

the exponential expansion driven by Λ — that is to approach R(t̄) = 0 — its “strength”

has to be of the same order of the cosmological constant. Because m2 is dominant, the

cosmological evolution does not change significantly from the one we described without

matter. The scale factor reaches a maximum, and then starts to contract. The dynamics

starts to depart from (3.3) at this point. Instead of approaching a contracting de Sitter

phase with constant curvature Λ, at a distant but finite time in the future the Ricci curva-

ture diverges: a “Big Crunch” occurs. At late times, when — during the contracting phase

— a(t) ≪ 1, the matter density is driving the evolution, and therefore the singularity is

unavoidable.

This picture is similar to a supercritical Universe, with the difference that no criticality

condition for ρq is present. The expansion is not stopped by the (supercritical) matter

density, but by the IR modification we introduced. Thus no matter how small ρq is, the

dynamics ends with a singularity at a finite time.

The model, despite being classically stable, is unstable under quantum corrections.

Moreover, even considering that the “Big Crunch” will occur in a (parametrically) very

distant future, the exit of the de Sitter expansion, which could be associated with a period
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of inflation, coincides with an era dominated by the m2-term. Thus, the model would not

follow the known cosmological evolution of our Universe.

4. Cyclic universe

As we have discussed in the previous section, a “Big Crunch” is unavoidable once quantum

corrections are taken into account. One way to avoid the singularity could be to modify

once more the gravitational Lagrangian.

By studying the effect the m2-term has on the cosmological evolution, we understood

that the modification we introduced slows down the expansion and ultimately stops it,

after which the Universe goes through a contracting phase. If we could have a term that

acts as the m2-term, namely that slows down the cosmological evolution, but is dominant

only when the size of the Universe is small, we might stop the collapse before the scale

factor reaches zero, and the curvature diverges. This can be attained by having chosen the

exponent α to be negative.

The most general (and minimal) Lagrangian is

L =
√−g

[

R− 2Λ + 2m2γα/2 + 2k2γβ/2
]

, (4.1)

where α is positive and β negative definite. On the FRW ansatz, the equation of motion is

ȧ2

a2
+
m2

3
a3α +

k2

3
a3β − Λ

3
= 0 . (4.2)

We can study the dynamics of a(t) by analogy with a classical particle moving in

the potential V = (m2a3α − Λ + k2a3β)a2/3. The potential is plotted in figure 4, for

β < −2/3, β = −2/3 and β > −2/3. The common feature of all the plotted potentials is

the presence of two turning points a(±), between which the point-particle would oscillate

back and forth. The model is of a cyclic Universe that “eternally” oscillates between a

minimum and a maximum size. Between the two extrema, the Universe is in a de Sitter

phase, either contracting or expanding.

We can study analytically the dynamics for the choice of α = 2/3 and β = −2/3; the

solution, shown in figure 5, is

a(t) = a(−)



1 − sn2



i

√

a2
(+) − a2

(−)

3
m(t− t0),

a2
(−)

a2
(−) − a2

(+)









1/2

, (4.3)

where a(±) ≡ (Λ±
√

Λ2 − 4k2m2)/2m2, and sn(u, µ) is the Jacobi sn elliptic function with

periodicity3

T =
4
√

3

(Λ2 − 4k2m2)1/4

[

iK

(

a2
(−)

a2
(−) − a2

(+)

)

+K

(

a2
(+)

a2
(−) − a2

(+)

)]

, (4.4)

where K(µ) is the complete elliptic integral of first kind.

3More exactly, the Jacobi sn(u, µ) is doubly periodic in the complex plane, that is sn(u + 4(K(µ) +

i n K(1 − µ)), µ) = sn(u, µ) where n ∈ Q. In the present case, n is fixed by requiring the period to be real.
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Figure 4: Potential for the analogous 1-dimensional dynamics; the continuous line is for β = −2/3,

the dashed for β > −2/3 and the dot-dashed for β < −2/3.

Figure 5: Plot of the scale factor a(t) in respect to time for the cyclic solution.

The presence of the k2-term effectively “screens” regions of small size. It slows and

stops the contraction up to a non-zero scale factor a(−), in the same way that the m2-term

stops the expansion at large scale.

Näıvely we would expect this model to be stable under quantum correction, for k2-

term could stop the collapse in presence of matter too. It is like the new term creates a

potential barrier at small scales, preventing the scale factor to reach zero size. The presence

of matter would lower the barrier, but by tuning k2 we can avoid its disappearance.

The loop-hole in this argument is the periodicity of the model. At each cycle new

matter is generated by quantum corrections as seen in the previous section. Eventually

ρq will “overcome” the barrier leading towards a “Big Crunch”, unless the k2-deformation

is always dominant at small scale factors, no matter how big ρq is. This is obtained by

taking β < −1 − w, where w is the equation of state for the particles generated through
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Figure 6: Typical inflaton potential V (ϕ).

quantum effects. For radiation w is equal to 1/3, thus if β < −4/3 a minimal size a(−) is

always present.

In the approximation the m2-deformation and cosmological constant are negligible,

which is always the case for a(t) ≪ 1, the minimal size is

a(−) ∼
(

k2

ρq

)1/3|β+1+w|
. (4.5)

Obviously, because more and more matter is generated at each cycle, a time will come

when a(−) will be of Planck size, and therefore our semi-classical description will break

down.

5. Embedding inflation

In the following, we would like to depart slightly from the previous discussions, that have

considered the effects of gravity modifications in a de Sitter space-time.

We will consider a generic inflationary model, and describe how the terms we intro-

duced would effect inflation, and what kind of bounds we could have. We will, therefore,

consider modified gravity coupled to a scalar field, the inflaton. The plot of a typical

inflaton potential V (ϕ) is sketched in figure 6.

When the inflaton is atop the plateau, its energy density is dominated by the potential,

namely ϕ̇2 ≪ V (ϕ), and approximately constant. This plays the role of the cosmological

constant Λ = V (ϕ). The space-time is exponentially expanding as long as the inflaton sits

on the plateau.

This configuration is not stable, in fact it is energetically favorable for the scalar field

to condense at the minimum of the potential, 〈ϕ〉 = ϕ0. When the inflaton condenses on its

true vacuum, inflation ends, because the energy density is no longer a non-zero constant.
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Once inflation is over, the inflaton decays more or less efficiently, depending on its

coupling, into the Standard Model fields, reheating the Universe. From this point on, the

cosmological evolution follows the Standard Model of Cosmology.

We can embed this general picture into our model and describe what constraints arise

from cosmology and general requirements.

The Universe described by (4.3) — solution of the Friedmann equation — goes through

periodic exponential expansions and contractions. The requirement to have the usual

description from the inflation framework within this model demands the scalar field ϕ to

condense into its true vacuum during an exponential expansion. Conversely, if it condensed

during a contraction, the density perturbation originated during the inflationary period

would be washed out at the unavoidable bounce.

Thus the inflaton can condense any time between a(−) and a(+), and this in turn

provides a bound on the number of e-foldings Ne as a function of the parameters m2

and k2

Ne > log
a(+)

a(−)
= log

Λ +
√

Λ2 − 4k2m2

Λ −
√

Λ2 − 4k2m2
. (5.1)

This relation can also be read as a bound on the parameter m2. Assuming m2 to be

much smaller than Λ and k2, we find the following bound

m2 .
Λ2

k2
exp[−2Ne] . (5.2)

The modification we introduced must be exponentially smaller than the de Sitter cur-

vature in order to satisfy the cosmological bound on Ne as it arises from matching the

inflaton density perturbations with the anisotropies observed in the CMB (Ne & 60).

Few comments should follow. Firstly, (5.2) is strictly an upper bound, for, if inflation

end when the m2-term is dominant, that is when a(t) ∼ a(+), the cosmological evolution

could not start in a radiation-dominated epoch, as in the Standard Model of Cosmology.

Secondly, whether in our model inflation could be eternal — see, for instance [22, 23].

As we have throughly discussed in the previous sections, the additional potential-like term

acts to stop the cosmological evolution bringing to an end any inflationary periods. It is

not obvious how inflation could be eternal in a model that does not allow the space time

to expand indefinitely.

In the standard picture of eternal inflation, false vacuum bubbles nucleate due to quan-

tum fluctuations of the inflaton field. If the size of these bubbles is larger than their Hubble

radius, they are causally disconnected from the “ambient” space. They will independently

evolve and eventually pinch off.

As long as the deformation is negligible, the previous picture applies to our model as

well. From the point of view of an observer living in one of these bubbles, they have no way

to know anything about what is happening outside the horizon. It should be natural to

expect that, once the “ambient” space bounces back, it keeps collapsing towards a de Sitter

contracting phase, while the bubbles, unaware of anything happening outside their Hubble

radius, expand until they pinch off. Hence new “baby” Universes are generated, and they

– 14 –



J
H
E
P
1
1
(
2
0
0
8
)
0
2
3

will follow the same evolution of their “parent” Universe: the Universe will keep self-

replicating and at any time at least one patch will be in an inflationary regime.

Even though every bubble can expand only till reaching a finite size before bouncing

back towards a contracting phase, the total number of nucleated bubbles will be infinite,

hence eternal inflation is a possible scenario in our model.

5.1 A curiosity

Something curious happens for a particular, non-small value of km/Λ.

If Λ = 2km, the two turning points a(±) are equal as it follows from their definitions.

At this particular value, the solution of the Friedmann equation is of a flat space-time.

For the tuned value of m2, an otherwise de Sitter space-time turns out to be effectively

flat. This solution can be nicely understood from the analogous classical point-particle

description. As we have already stressed, the cosmological constant acts as a repulsive force,

whilst the m2-term as an attractive one. When Λ = 2km, those two forces balance exactly

leading to the allowed range of a(t) to shrink down to a point. From the cosmological view

point, the scale factor is time-independent and therefore the space-time is effectively flat.

Some fine-tuning is required for this solution, therefore it would be interesting to

understand how (if) the solution is reached in a generic inflationary model.

Let us consider a linear potential V (ϕ) = Λ0−η2ϕ with η2 ≪ Λ0 to satisfy the slow-roll

condition. In a usual inflationary model, inflation would be eternal, for no minimum of the

potential of the scalar field is present. But an exponential expansion always stops when

the m2-term becomes dominant, so it is not clear what dynamics will follow in our model.

The scalar field follows its own equations of motion coupled to gravity

ϕ̈+ 3
ȧ

a
ϕ̇+ V ′(ϕ) = 0 ,

ȧ2

a2
+m2a2 + k2a−2 −

[

1

2
ϕ̇2 + V (ϕ)

]

= 0 , (5.3)

where H = ȧ/a, the Hubble constant, is a friction force for ϕ. In the slow-roll approxima-

tion, the inflaton reaches critical but small velocity |ϕ̇| ∼ |V ′(ϕ)/3H| = η2/3H ≪ V (ϕ).

The effective cosmological constant is Λ ∼ V (ϕ) = Λ0 − η2ϕ. Since ϕ is changing

in time, so is Λ, but we can assume the slow-roll approximation to hold at any time,

ϕ̇2 ≪ V (ϕ).

The Hubble constant H2 = (ȧ/a)2 is monotonically decreasing from its initial value

Λ0. The lower limit is at Λ ∼ 2km, where ϕ̇ diverges. Thus, at this point, the inflaton is

in a fast-roll regime with the kinetic energy dominating over the potential: ϕ̇2 ≫ V (ϕ).

We can drop the potential from the equations of motion (5.3)

ϕ̈+ 3
ȧ

a
ϕ̇ = 0 , (5.4)

ȧ2

a2
+m2a2 + k2a−2 − 1

2
ϕ̇2 = 0 . (5.5)

The dominant term is the kinetic energy — ϕ̇2 = ϕ̇2
0a

−6 from (5.4) — that drives

the expansion until, at very late times, the m2-term becomes dominant and leads to a

contracting phase.
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Because ϕ̇2
0 ≫ m2, k2, the dynamics is that of a supercritical system, and the Universe

would eventually collapse in a “Big Crunch” singularity.

6. Massive modification

In the present section, we will describe the effects a massive modification — of the kind first

described in [8] — has when it is considered in conjunction with the deformation described

in section 3.

Before starting on describing the cosmological evolution that arises when both defor-

mations are taken into account, we should emphasize that the present modification is very

different from the one so far described. We showed that the number of degrees of freedom is

unaltered when
√−gf(

√
γ) is introduced. Instead, in the case we shall present the number

of propagating degrees of freedom will be different.

The Lagrangian of the model we would like to discuss is

L =
√−g[R− 2Λ + 2µ2

1

(1 −N)2

N
+ 2µ2

2γ
α/2] , (6.1)

with the following equations of motion

Gµν +

[

Λ − µ2
1

(1 −N)2

N
− µ2

2(α+ 1)γα/2

]

gµν+

+
[

µ2
1N(N2 − 1) − µ2

2αN
2γα/2

]

δ0µδ
0
ν = 0 . (6.2)

Notation is consistent with the one used before. N is the lapse function and γij the induced

spatial metric defined in (2.1). As we discussed in our previous letter [8], the modification√−g(1−N)2/N is the only one quadratic in the lapse function, over which fluctuations do

not present instabilities like tadpoles and the Hamiltonian of (6.1) is bounded from below.

It is evident from the Hamiltonian

H =
√
γ
[

NR0 +NjR
j + 2ΛN − 2µ2

1(1 −N)2 − 2µ2
2Nγ

α/2
]

, (6.3)

that the shift function Nj remains a Lagrange multiplier, while the lapse N ceases to be

it. The algebraic equation for N , that is 2µ2
1N = R0/2 + Λ + µ2

1 − µ2
2 γ

α/2, can be seen

as a constraint for the degrees of freedom, thus on this background the gravitational field

propagates three degrees of freedom, instead of the two as in the previous cases.

For this, the newly added modification is different from the ones we discussed previ-

ously: despite our analysis will follow closely the one of the previous sections, we should

bear in mind that the models describe two very different fields. On the one hand, in

section 3 the field is a massless tensor field propagating on a deformed (with respect to

standard GR) background; on the other, in the present section we will discuss a model

for a massive4 tensor field. The presence of the deformations will modify the cosmological

evolution away from GR, as we will readily see in a moment.

4In this context, we call “massive” a field that propagates a number of degrees of freedom different than

two; it should be noted also that the action is not symmetric under the Lorentz symmetry and therefore

the intuition of a massive tensor field propagating five degrees of freedom is not necessarily respected.
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Figure 7: Potential for the analogous 1-dimensional dynamics: continuous line is for µ1 = µ2 = 0,

long dashes for µ2 = 0, short for µ1 = 0 and mixed dashed line for the general case.

On the ansatz ds2 = −N(t)2dt2 + a(t)d~x2 and after a bit of algebraic manipulation of

the equations of motion (6.2), we find the following equation for the scale factor a

ȧ2 − Λ

3
a2

[

1 + 2
µ2

1

Λ
(1 −

√

1 + a−3) − µ2
2

Λ
a3α

]

= 0 , (6.4)

where the derivative ȧ is in respect to the proper time dτ = N dt and N =
√

1 + a−3,

relation that can be derived directly from the equations of motion.

It is useful to discuss the solution of (6.4) as for an analogous one-dimensional point

particle moving in the potential V (a) = −Λ
3 a

2
[

1 + 2
µ2

1
Λ (1 −

√
1 + a−3) − µ2

2
Λ a

3α
]

.

The potential is depicted in figure 7 for various values of µ1 and µ2. In particular, the

continuous line is for µ1 = µ2 = 0 and the dynamics is that of a de Sitter space-time with

cosmological constant Λ, as expected. The other two limiting cases are when one of the

two deformations is absent; we find that for µ1 = 0 — short dash curve — the cosmological

expansion proceeds as for a de Sitter universe until a maximum size a(+), after which it goes

through an exponentially contracting phase. That is, the solution we discussed previously

in so much detail is recovered.

For µ2 = 0 — long dash curve — a minimum size a(−) for the scale factor emerges.

The dynamics is very much similar to the one we described for the cyclic universe model

of section 4 when only the k2-deformation of (4.1) is present: the cosmological evolution

is that of a contracting de Sitter universe until the Universe reaches size a(−), after which

it bounces back toward an expanding de Sitter phase.

When, instead, both deformations are present, the analogous potential V (a) displays

two turning points a(±). The dynamics can be read easily from it, and it is like the cyclic

Universe model of section 4: the cosmological evolution goes through subsequent periods

of expansion and contraction, between the minimum and maximum sizes a(−) and a(+).

Those values are the zeros of V (a), and given that, when the size of the Universe is of order
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of a(−) the µ2
2-term is sub-dominant in respect to both the cosmological constant Λ and

the µ2
1-term (and vice-versa for a(+)), they are approximately:

a(−) ∼
(

4µ4
1

Λ(Λ + 4µ2
1)

)
1
3

,

a(+) ∼
(

Λ

µ2
2

)
1
3α

. (6.5)

The turning point a(+) is the same as the one we found in the model of section 3. On

the other hand, a(−) ∼ (µ1/Λ)2/3, when µ2
1 ≪ Λ, is what would be the turning point for a

deformation of the kind γα/2 with α = −1/2. This is not surprising. In the regime when µ2

is sub-dominant, the cosmic evolution is driven by the µ2
1-deformation. From the equations

of motion (6.4), we find cosmology being driven by a term –
√

1 + a−3 ∼ a−3/2 — that

acts like a3α for α = −1/2, i.e., equivalent to the deformation of section 3 for a particular

choice of α.

Again we should stress that, even though the backgrounds are alike, the fields prop-

agating over them act very differently, for one carries two degrees of freedom, while the

other three. Therefore, they describe two very different gravitational models.

7. Conclusions

Models, that describe gravity beyond Einstein GR, have been focussed mainly on higher

derivative deformations, like f(R) gravity for instance. In the present letter, we discussed

a class of models, that modify gravity via potential-like terms.

The f(
√
γ) deformation we introduced does not add any derivatives of the metric to

the action. Because of this, we argued that the propagating degrees of freedom are of a

transverse-traceless tensor field, as in GR. We arrived to this conclusion by studying the

perturbations of the metric in the Lagrangian formalism. Therein, it was also evidenced the

presence of instantaneous interactions. This a-casual effect is characteristic of the models

at hand, where Lorentz symmetry is broken explicitly. Their presence was firstly noted

in [8], and we remind to it for a more detailed discussion.

We then studied the exact cosmological solution for some particular choices of f(
√
γ).

The main feature is that the introduced term acts to generically stop the cosmological evo-

lution. Depending on the details of the model, a bounce is generated during either a period

of contraction or one of expansion. Independently from these details though, particles are

produced via quantum effects at the bounce. Quantum corrections destabilize an otherwise

stable classical solution. The result is to create a future “Big Crunch” singularity: after a

finite time the scalar curvature will diverge and the Universe will shrink to zero size.

In more specific sections, we discussed the effects and bounds on the parameters that

arise when the model is embedded into a generic model of inflation. In particular, we

noticed that the dimension-full parameter m2 has to be exponentially smaller than the

Hubble radius during inflation, so to satisfy the bounds imposed by the CMB.
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Left to future investigations is the study of Schwarzschild solutions for the present

model, like in [24 – 26]. It would be interesting to know what kind of effects the f(
√
γ)-

term has on a Schwarzschild-like solution, and to see how (if) it screens the gravitational

field of a massive point-particle.

Also left out is the understanding of the UV completion of the model. We have

always stressed that the introduced deformation f(
√
γ) should be thought as an effective

term rising from some UV phenomena. The question is to exactly determine what kind of

phenomena. Studies in this direction have flourished in the past few years, [4] and [11 – 17],

and it would be interesting to have a fully consistent mechanism that breaks spontaneously

the Lorentz symmetry and generates f(
√
γ)-term at low energies.
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